

HINS Program Overview

- The High Intensity Neutrino Source (HINS) R&D Program has been an active effort since 2005 to demonstrate innovative application of technologies in a low-energy, high-intensity proton/H⁻ linear accelerator for a Proton Driver
- The HINS linac is being assembled in the Meson Detector Building
- HINS budget has been ~7-8M\$ (direct costs) per year including M&S and Labor
- HINS effort has occupied ~40 FTE per year spread across AD, APC, and TD
- HINS technology is a good candidate for the front-end of a pulsed Project X Linac, less so for a CW Linac
- The HINS program will lose its independent identity in FY11 as funding for continued activity transfers to Project X and SCRF

HINS Program Traditional Goals

- Mission To address accelerator physics and technology questions for a new concept, low-energy, high intensity, long-pulse Hsuperconducting Linac; in particular, to demonstrate:
 - beam acceleration using superconducting spoke-type cavity structures* starting at a beam energy of 10 MeV
 - acceleration of a non-relativistic beam through multiple RF cavities controlled with individual high power RF vector modulators driven by a single high power klystron
 - control of beam halo and emittance growth* by the use of solenoid focusing optics
 - a fast, 325 MHz bunch-by-bunch, beam chopper*
- The mission is now being re-evaluated in light of current Project X thinking

* Aspects remaining highly relevant to Project X

Scope of HINS

- The traditional scope of HINS in the Meson Detector Building, comprises:
 - 50 keV ion source
 - 2.5 MeV RFQ
 - MEBT with fast beam chopper system
 - A "room temperature" linac to 10 MeV composed of copper CH-type spoke accelerating cavities and superconducting (SC) solenoid magnets
 - One or two 9-cavity cryomodules of 325 MHz superconducting spoke resonator and superconducting solenoid magnets
 - Pulsed 2.5 MW klystron(s) for RF power
 - Beam diagnostics
- Scope is currently being re-evaluated in light of current Project X thinking

Layout in Meson East

Project X HINS 50 keV Ion Source

Project X Ion Source Emittance Scan Data

HINS RFQ Installation

RFQ in Vacuum Tank

RFQ History

- RFQ ordered Spring 2006
- 325 MHz klystron RF power source was installed and commissioned in Meson April 2007
- RFQ first delivered July 2008
- Returned to vendor for plumbing correction
- Received for second time September 2008
- First RF power applied late December 2008
- Serious de-tuning problem observed February 2009
- Returned to vendor for repairs July 2009
- Received for third time September 2009
- Powered again and then mated to ion source Nov/Dec 2009
- First 2.5 MeV beam from RFQ on January 13, 2010

First 2.5 MeV Beam through RFQ on January 13

Signals from toroid and two BPM buttons, all downstream of the RFQ

Upper display: 2 µsec/div Lower display: 20 nsec/div

Lower display shows the 44nsec delay expected for transit of 2.5 MeV beam between the BPM two buttons separated by 0.96 meters

Beam current is about 3 mA

Typical HINS 2.5 MeV Beam Profiles – Horizontal at 4 mA

Project X Output Beam vs. RF Power

Near Term Plans

- Run 2.5 MeV beam from RFQ until ~mid-February
- Remove RFQ from beam line to replace water tubing seals
- Complete Linac Cave construction for Six-Cavity Test and 10 MeV operations
- Future beam operations
 - Better characterize ion source beam while RFQ is being repaired
 - Re-install RFQ at suitable stage of enclosure construction; not before May 2010
 - Configure 2.5 MeV beam line for transverse beam emittance measurements
 - Install "Six-Cavity Test" RF distribution system and beam line elements; ready for "Six-Cavity Test" ~November 2010
- Complete HINS Safety Assessment Document, shielding assessment, and safety interlock system modifications for Linac enclosure and Cavity Test Facility Cave
- In parallel with beam operations, complete 325 MHz Superconducting Spoke RF Cavity Test Facility
 - Fabricate and install cryogenic transfer line tubes to cryostat
 - Install first jacketed SSR1 cavity for CW testing in ~May 2010

The Six-Cavity Test

- Purpose: early demonstration of beam acceleration with vector modulator control (before availability of cryogenics distribution system)
- Warm quadrupole magnets substituting for SC solenoids
- ~3.0 MeV protons
- Diagnostic line for beam evaluation

Linac Enclosure Under Construction Around Room Temp Section Girder

Project X HINS Strategy in Project X

- Construct H- linac to at least 10 MeV in pursuit of original HINS goals that remain relevant to Project X
- Maintain a beam facility for Project X chopper testing and beam instrumentation development
- Continue SSR1 spoke cavity and cryomodule development activities with design considerations taken for CW and 2° K operation in direct support of Project X
- Achieve world-first beam acceleration through at least one SSR1 cryomodule

Summary

- The HINS program successfully achieved 2.5 MeV beam from its RFQ on January 13, 2010
- HINS will provide facilities important for Project X developments:
 - the possibility of 2.5 MeV beam in a shielded enclosure
 - multi-MeV energy beam, via the "Six-Cavity Test", by spring 2011
 - a facility for RF testing 325 MHz superconducting spoke cavities by late spring this year
- HINS will fold into the Project X and SCRF programs next fiscal year, losing its independent identity

Backups

Project X Tested RT-CH and Buncher **Cavities**

Room Temp Section Solenoid & Cryostat

SSR1 Cavity – Bare and with Helium Vessel and Tuner

Project X Spoke Cavity Test Cryostat

In MDB awaiting installation into test cavity cave

RFQ Close-up

RFQ Close-up

RFQ RF Joint Failure

Project X RFQ and 2.5 MeV Beamline

